The Almost Periodic Rigidity of Crystallographic Bar-Joint Frameworks

نویسندگان

  • Ghada Badri
  • Derek Kitson
  • Stephen C. Power
چکیده

A crystallographic bar-joint framework, C in R, is shown to be almost periodically infinitesimally rigid if and only if it is strictly periodically infinitesimally rigid and the rigid unit mode (RUM) spectrum, Ω(C), is a singleton. Moreover, the almost periodic infinitesimal flexes of C are characterised in terms of a matrix-valued function, ΦC(z), on the d-torus, T, determined by a full rank translation symmetry group and an associated motif of joints and bars.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The rigidity of periodic body-bar frameworks on the three-dimensional fixed torus.

We present necessary and sufficient conditions for the generic rigidity of body-bar frameworks on the three-dimensional fixed torus. These frameworks correspond to infinite periodic body-bar frame-works in with a fixed periodic lattice.

متن کامل

Frameworks with crystallographic symmetry.

Periodic frameworks with crystallographic symmetry are investigated from the perspective of a general deformation theory of periodic bar-and-joint structures in Euclidean spaces of arbitrary dimension. It is shown that natural parametrizations provide affine section descriptions for families of frameworks with a specified graph and symmetry. A simple geometrical setting for displacive phase tra...

متن کامل

Infinitesimal Rigidity of Symmetric Bar-Joint Frameworks

We propose new symmetry-adapted rigidity matrices to analyze the infinitesimal rigidity of arbitrary-dimensional bar-joint frameworks with Abelian point group symmetries. These matrices define new symmetry-adapted rigidity matroids on grouplabeled quotient graphs. Using these new tools, we establish combinatorial characterizations of infinitesimally rigid two-dimensional bar-joint frameworks wh...

متن کامل

Crystal frameworks, matrix-valued functions and rigidity operators

An introduction and survey is given of some recent work on the infinitesimal dynamics of crystal frameworks, that is, of translationally periodic discrete bond-node structures in R, for d = 2, 3, . . . . We discuss the rigidity matrix, a fundamental object from finite bar-joint framework theory, rigidity operators, matrix-function representations and low energy phonons. These phonons in materia...

متن کامل

Periodic frameworks and flexibility

We formulate a concise deformation theory for periodic bar-and-joint frameworks in Rd and illustrate our algebraic–geometric approach on frameworks related to various crystalline structures. Particular attention is given to periodic frameworks modelled on silica, zeolites and perovskites. For frameworks akin to tectosilicates, which are made of one-skeleta of d-dimensional simplices, with each ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Symmetry

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014